Talar Neck Fractures

Earn CME/CE in your profession:


Continuing Education Activity

Talar neck fractures are relatively uncommon but potentially devastating injuries that are often associated with life-altering sequelae. They are associated with high-energy mechanisms and often present alongside multiple traumas. This activity reviews the evaluation, treatment, and complications of talar neck fractures. It highlights the roles of the interprofessional team in managing patients with these injuries.

Objectives:

  • Describe the pathophysiology of talar neck fractures.
  • Outline the typical imaging findings associated with talar neck fractures.
  • Identify the most common adverse events associated with talar neck fractures.
  • Explain the importance of improving care coordination amongst the interprofessional team to enhance care delivery for patients with talar neck fractures.

Introduction

Talar neck fractures are relatively uncommon but potentially devastating injuries with often life-altering sequelae. The talus is located in the hindfoot and permits pain-free motion of the ankle, subtalar, and transverse tarsal joints. Talar neck fractures are associated with high-energy mechanisms, with severe soft tissue injury, bony comminution, and fracture displacement is common. Injury to the talar neck with resulting displacement can lead to permanent stiffness, deformity, and pain, with hindfoot arthrosis estimated to occur in greater than 90% of displaced talar neck fractures.[1]

The uncommon nature of these injuries partially explains the paucity of high-quality literature to drive evidence-based treatment strategies. Displaced talar neck fractures almost exclusively receive treatment with open reduction internal fixation with nonoperative treatment reserved for the rare nondisplaced injury pattern or fractures in patients who are not surgical candidates. Classic complications following open fixation of talar neck fractures include osteonecrosis or avascular necrosis (AVN), posttraumatic arthritis, and malunion.[2]

The high-energy traumatic mechanism is often a feature in these injuries, and fracture fragment displacement can disrupt the tenuous supply to the talus resulting in necrosis. Unrecognized comminution of the medial talar neck predisposes these injuries to malreduction leading to varus malunion deformity. Many of these injuries ultimately require hindfoot arthrodesis procedures for pain-relief regardless of the timing of fixation and quality of reduction. The high-energy mechanism of talar neck fractures also leads to significant soft tissue injury making surgical wound healing a considerable concern.

Etiology

Anderson first reported a small case series of 18 talar neck fracture-dislocations in 1919 and coined the term “aviator astragalus” to describe this injury pattern.[3] Aviator astragalus referred to the increased incidence of talar neck fractures observed in fighter pilots during war-time following plane crashes. Typically, fractures of the talar neck occur with forced dorsiflexion of the ankle in the setting of a high-energy axial load.[1][4] Common injury mechanisms today include motor vehicle accidents or falls from height. The fracture occurs when the dense cortical bone of the anterior tibia is driven inferiorly and encounters the less-dense trabecular bone of the talar neck.[4] Once the weak talar neck becomes disrupted, force propagates through ligamentous structures surrounding the talus, including the talocalcaneal ligament and the complex subtalar and posterior ankle ligamentous complexes.[1] This action leads to subluxation or dislocation of the talar body from its articulations with the tibia superiorly and the calcaneus inferiorly. Significant rotational forces such as hindfoot supination are also thought to play a role in the degree of displacement of talar neck fractures. Hawkins reported a 26% rate of concomitant medial malleolus in a series of 27 talar neck fractures.[5]

Epidemiology

Fractures of the talus are the second most common injuries of all tarsal bone fractures, with talar neck fractures accounting for approximately 50% of all talus fractures.[1] Although the most common site of injury in the talus, talar neck fractures remain a rare injury pattern and consist of less than 1% of all bony injuries of the foot and ankle.[4][6]

Pathophysiology

The talar neck represents the junction between the head and body of the talus. It is angled 10 to 44 degrees medially and 5 to 50 degrees plantar respective to the talar body.[1] It contains less trabecular bone than the talar head or body.[7] The trabecular bone in the talar body orients in a direction that facilitates the transfer of weight-bearing force from the tibial plafond through the talar dome.[7] The trabecular bone of the talar neck is oriented in an abruptly different direction, predisposing this already weaker anatomic area to fracture.[4]

History and Physical

Patients with fractures of the talar neck typically present following a high-energy traumatic mechanism such as motor vehicle accident or fall from height with hindfoot pain, ecchymosis, and swelling. These patients are often victims of polytrauma and likely have other bony, vascular, or soft tissue injuries, so the basic “ABCs” (airway, breathing, and circulation) of acute trauma care are paramount. A complete neurovascular examination should is necessary with both the dorsalis pedis and posterior tibial artery pulses palpated or evaluated with a doppler if necessary. The cutaneous sensory distribution of all five named nerves of the foot (superficial peroneal, deep peroneal, saphenous, sural, and tibial nerves) should be examined.

The motor exam consists of plantar and dorsiflexion of the great toe and ankle and inversion and eversion of the foot, documenting any neurovascular deficits. The skin should undergo close inspection for abrasion or laceration concerning for possible open fracture. If found to be an open fracture, thorough bedside irrigation and debridement are necessary, and intravenous antibiotics and tetanus vaccination are provided. Dislocations and bony deformity require reduction, and the extremity is placed into a temporizing splint for pain relief and to alleviate pressure from the soft tissues surrounding the talus. If an extruded talus is present, the bone should be thoroughly washed with sterile saline and placed back inside the soft tissue envelope if possible.

Evaluation

The evaluation of a talar neck fracture should begin with plain radiographic imaging with an appropriate plain-film X-ray series consisting of anteroposterior (AP), lateral, and Canale views. The Canale view provides the best visualization of the talar neck. It is obtained by angling the x-ray beam 75 degrees from the horizontal and positioning the foot in maximum equinus with varying degrees of eversion (usually 15).[8] Computed tomography (CT) scans have drastically improved the evaluation of talar neck fractures by allowing visualization of complex periarticular anatomy. CT is the best study to assess the degree of displacement, congruity of the articular surfaces, and comminution of these fracture patterns, with additional information gained in 93% of cases.[9] Three-dimensional (3-D) reconstructions of CT imaging demonstrates sagittal or coronal alignment and facilitates surgical planning. Magnetic resonance imaging (MRI) has a limited role in evaluating talar neck fractures in the acute setting.

In 1970, Dr. Leland Hawkins published a now landmark paper in which he described a classification system for talar neck fractures.[5] This classification system now bears his name and is known as the Hawkins Classification of talar neck fractures. Originally, only types I-III were described, and it was not until 1978 when Canale and Kelly added type IV.[10] A literature review performed by Day et al. revealed Dr. Hawkins’ classic publication had 263 citations, and the revision by Canale and Kelly a further 206.[11] The Hawkins Classification is based upon fracture displacement and the presence/location of joint dislocation(s) surrounding the talus.

  • Hawkins I: nondisplaced fracture
  • Hawkins II: fracture with an associated subtalar dislocation
  • Hawkins III: fracture with associated subtalar and tibiotalar dislocation
  • Hawkins IV: fracture with associated subtalar, tibiotalar, and talonavicular dislocations

The value of a classification system rests on its ability to predict outcomes or guide treatment. The Hawkins classification has been shown to be prognostic in nature, with more severe injury (Hawkins IV) having a higher rate of osteonecrosis.[4]

  • Hawkins I: 0 to 13% AVN
  • Hawkins II: 20 to 50% AVN
  • Hawkins III: 20 to 100% AVN
  • Hawkins IV: 70 to 100% AVN

Treatment / Management

Displaced talar neck fractures almost exclusively receive treatment by open reduction and internal fixation with nonoperative treatment reserved for the rare nondisplaced injury pattern or fractures in patients who are not surgical candidates. Nonoperative treatment consists of immobilization with a splint in the acute setting, transitioning into a short leg cast when swelling has subsided. Surgical options for talar neck fractures include external fixation or open reduction internal fixation. A spanning external fixator is often selected as a temporizing measure to stabilize the bony injury and allow observation of the soft tissue envelope. The goal of surgery is anatomic reduction, which can be challenging in scenarios of high displacement, comminution, or angulation. A biomechanical study demonstrated that as little as 2 millimeters of malreduction of the articular surface alter contact stresses.[12] 

Directly visualizing fracture reduction is paramount, with a dual incision technique (anteromedial and anterolateral) often necessary. Exposures can be augmented with malleolar osteotomies to aid in the visualization of the talar neck and body. Soft tissue considerations, fracture type, and other associated injuries often dictate the exact surgical approach. There are various reports of screw, plate, and hybrid fixation strategies. An estimated 96% of reported fractures of the talar neck were addressed with some combination of plate and/or screw constructs.[13]

Historically, talar neck fractures were treated with the urgency reserved for open fractures or irreducible dislocations. The theory was that prompt reduction and fixation maintained the tenuous blood supply to the talus.[5][10][14] New literature has provided conflicting results.[15] The current understanding is that the risk for osteonecrosis is related to the degree of displacement at the time of injury.[15] An important distinction is that although delayed fixation is acceptable, delayed fracture reduction is not.

Differential Diagnosis

Differential diagnoses of talar neck fractures include talar body fractures, talar head fractures, rotational ankle fractures, ankle fracture-dislocations, simple ankle dislocations, calcaneal fractures (both tongue and depression type), and subtalar joint simple or fracture-dislocations. These etiologies of traumatic hindfoot pain and deformity can be differentiated using CT imaging.

Prognosis

Given the associated high energy mechanism and severe soft tissue injury often seen in talar neck fractures, the prognosis is poor. The frequently encountered concomitant injuries limit many talar neck fracture cases, as isolated talar neck fractures are unusual. The high association with other lower extremity and axial spine injuries may contribute to worse outcomes.[16][17] In a series of 70 talar neck fractures, Sanders et al. demonstrated that the incidence of foot and ankle reconstructive surgery following fixation increased over time.[6] The authors also reported an association with poor patient-reported outcomes and the development of postoperative complications.[6] Failure to recognize the displacement of fracture fragments and subsequent malreduction can also lead to poor outcomes.[18] Patients with talar neck fractures should receive counseling that residual hindfoot pain is common even after surgery, with 18.6% of patients requiring an arthrodesis procedure by 6 years.[19]

Complications

There are extensive reports of high-rates of complication following talar neck fractures in the literature.[5][10] Reported rates of osteonecrosis of the talus after talar neck fracture range from 11% to 100%.[16][20][21] Posttraumatic arthritis is widely thought to be even more common than necrosis, with reports of 30% to 90% of patients affected.[21][22][23][24] Involvement of the subtalar joint accounts for 81% of cases of posttraumatic arthritis.[13][19] Postoperative infection is a concern given the high incidence of open fracture and soft tissue injury, with a reported deep infection rate of 21%.[19] Nonunion of talar neck fractures is relatively uncommon (under 5%), while malunion rates range from 20 to 37%.[19][25][26] Varus malunion is the most commonly reported deformity and is a result of unappreciated or malreduced medial comminution.[24]

Consultations

If the examiner identifies a talar neck fracture, a trauma or foot and ankle fellowship-trained orthopedic surgeon is necessary. If unavailable, the patient should be promptly transported to an appropriate facility where orthopedic care is available.

Deterrence and Patient Education

Hindfoot pain, swelling, and ecchymosis should prompt immediate presentation to an emergency department, especially in a mechanism consistent with an axial load applied across the ankle with forced dorsiflexion.

Pearls and Other Issues

The Hawkins sign is a helpful radiographic tool to assess for the development of osteonecrosis following a talar neck fracture. This prognostic sign is defined as a lucency beneath the subchondral bone in the talar dome observed approximately 6 to 8 weeks following injury.[13] Typically, the lucency is first visible in the medial aspect of the talus, followed by progression laterally. The presence of the subchondral lucency or Hawkins sign correlates with intact talar vascularity and rare progression to osteonecrosis.[4]

Enhancing Healthcare Team Outcomes

Talar neck fractures typically undergo management with dual-incision open reduction and internal fixation techniques. While the prompt reduction of fracture-dislocations is recommended, definite fixation can delay until the soft tissue envelope is amenable without an increased risk of osteonecrosis. In a series of 25 patients with 26 displaced talar neck fractures with a mean follow-up of 74 months (Level IV evidence), Lindvall et al. observed a union rate of 88% and concluded a delay in surgical fixation does not affect the outcome, such as osteonecrosis or union.[15]

Talar neck fractures require the efforts of an interprofessional team that includes physicians, orthopedic and possibly neurological specialists, nursing with specialized orthopedic training, and, when necessary, pharmacists, all collaborating across disciplines to achieve optimal patient outcomes. [Level 5]



(Click Image to Enlarge)
<p>Talar Neck Fracture</p>

Talar Neck Fracture


Image courtesy of S Bhimji, MD

Details

Editor:

Doug W. Byerly

Updated:

5/2/2022 9:45:30 PM

References


[1]

Fortin PT, Balazsy JE. Talus fractures: evaluation and treatment. The Journal of the American Academy of Orthopaedic Surgeons. 2001 Mar-Apr:9(2):114-27     [PubMed PMID: 11281635]


[2]

Jordan RK, Bafna KR, Liu J, Ebraheim NA. Complications of Talar Neck Fractures by Hawkins Classification: A Systematic Review. The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons. 2017 Jul-Aug:56(4):817-821. doi: 10.1053/j.jfas.2017.04.013. Epub     [PubMed PMID: 28633784]

Level 1 (high-level) evidence

[3]

COLTART WD. Aviator's astragalus. The Journal of bone and joint surgery. British volume. 1952 Nov:34-B(4):545-66     [PubMed PMID: 12999945]


[4]

Whitaker C, Turvey B, Illical EM. Current Concepts in Talar Neck Fracture Management. Current reviews in musculoskeletal medicine. 2018 Sep:11(3):456-474. doi: 10.1007/s12178-018-9509-9. Epub     [PubMed PMID: 29974334]


[5]

Hawkins LG. Fractures of the neck of the talus. The Journal of bone and joint surgery. American volume. 1970 Jul:52(5):991-1002     [PubMed PMID: 5479485]


[6]

Sanders DW, Busam M, Hattwick E, Edwards JR, McAndrew MP, Johnson KD. Functional outcomes following displaced talar neck fractures. Journal of orthopaedic trauma. 2004 May-Jun:18(5):265-70     [PubMed PMID: 15105747]


[7]

Ebraheim NA,Sabry FF,Nadim Y, Internal architecture of the talus: implication for talar fracture. Foot     [PubMed PMID: 10609708]


[8]

Thomas JL, Boyce BM. Radiographic analysis of the Canale view for displaced talar neck fractures. The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons. 2012 Mar-Apr:51(2):187-90. doi: 10.1053/j.jfas.2011.10.037. Epub 2011 Dec 9     [PubMed PMID: 22154058]


[9]

Williams T, Barba N, Noailles T, Steiger V, Pineau V, Carvalhana G, Le Jacques B, Clave A, Huten D. Total talar fracture - inter- and intra-observer reproducibility of two classification systems (Hawkins and AO) for central talar fractures. Orthopaedics & traumatology, surgery & research : OTSR. 2012 Jun:98(4 Suppl):S56-65. doi: 10.1016/j.otsr.2012.04.011. Epub 2012 May 19     [PubMed PMID: 22613935]


[10]

Canale ST, Kelly FB Jr. Fractures of the neck of the talus. Long-term evaluation of seventy-one cases. The Journal of bone and joint surgery. American volume. 1978 Mar:60(2):143-56     [PubMed PMID: 417084]

Level 3 (low-level) evidence

[11]

Day MA, Compton JT, Buckwalter JA 5th. Leland G. Hawkins, MD-His Life and Orthopaedic Legacy: Talus Fractures and the Hawkins Classification. The Iowa orthopaedic journal. 2018:38():1-8     [PubMed PMID: 30104918]


[12]

Sangeorzan BJ, Wagner UA, Harrington RM, Tencer AF. Contact characteristics of the subtalar joint: the effect of talar neck misalignment. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 1992 Jul:10(4):544-51     [PubMed PMID: 1613628]


[13]

Dodd A, Lefaivre KA. Outcomes of Talar Neck Fractures: A Systematic Review and Meta-analysis. Journal of orthopaedic trauma. 2015 May:29(5):210-5. doi: 10.1097/BOT.0000000000000297. Epub     [PubMed PMID: 25635362]

Level 1 (high-level) evidence

[14]

Santavirta S, Seitsalo S, Kiviluoto O, Myllynen P. Fractures of the talus. The Journal of trauma. 1984 Nov:24(11):986-9     [PubMed PMID: 6502773]


[15]

Lindvall E, Haidukewych G, DiPasquale T, Herscovici D Jr, Sanders R. Open reduction and stable fixation of isolated, displaced talar neck and body fractures. The Journal of bone and joint surgery. American volume. 2004 Oct:86(10):2229-34     [PubMed PMID: 15466732]


[16]

Elgafy H, Ebraheim NA, Tile M, Stephen D, Kase J. Fractures of the talus: experience of two level 1 trauma centers. Foot & ankle international. 2000 Dec:21(12):1023-9     [PubMed PMID: 11139032]


[17]

Fleuriau Chateau PB, Brokaw DS, Jelen BA, Scheid DK, Weber TG. Plate fixation of talar neck fractures: preliminary review of a new technique in twenty-three patients. Journal of orthopaedic trauma. 2002 Apr:16(4):213-9     [PubMed PMID: 11927801]


[18]

Huang PJ, Cheng YM. Delayed surgical treatment for neglected or mal-reduced talar fractures. International orthopaedics. 2005 Oct:29(5):326-9     [PubMed PMID: 16094539]


[19]

Halvorson JJ, Winter SB, Teasdall RD, Scott AT. Talar neck fractures: a systematic review of the literature. The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons. 2013 Jan-Feb:52(1):56-61. doi: 10.1053/j.jfas.2012.10.008. Epub 2012 Nov 13     [PubMed PMID: 23153783]

Level 1 (high-level) evidence

[20]

Metzger MJ, Levin JS, Clancy JT. Talar neck fractures and rates of avascular necrosis. The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons. 1999 Mar-Apr:38(2):154-62     [PubMed PMID: 10334706]


[21]

Pajenda G, Vécsei V, Reddy B, Heinz T. Treatment of talar neck fractures: clinical results of 50 patients. The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons. 2000 Nov-Dec:39(6):365-75     [PubMed PMID: 11131473]


[22]

Szyszkowitz R, Reschauer R, Seggl W. Eighty-five talus fractures treated by ORIF with five to eight years of follow-up study of 69 patients. Clinical orthopaedics and related research. 1985 Oct:(199):97-107     [PubMed PMID: 4042502]


[23]

Penny JN, Davis LA. Fractures and fracture-dislocations of the neck of the talus. The Journal of trauma. 1980 Dec:20(12):1029-37     [PubMed PMID: 7452746]


[24]

Lorentzen JE, Christensen SB, Krogsoe O, Sneppen O. Fractures of the neck of the talus. Acta orthopaedica Scandinavica. 1977 May:48(1):115-20     [PubMed PMID: 868480]


[25]

Vallier HA. Fractures of the Talus: State of the Art. Journal of orthopaedic trauma. 2015 Sep:29(9):385-92. doi: 10.1097/BOT.0000000000000378. Epub     [PubMed PMID: 26299809]


[26]

Buza JA 3rd, Leucht P. Fractures of the talus: Current concepts and new developments. Foot and ankle surgery : official journal of the European Society of Foot and Ankle Surgeons. 2018 Aug:24(4):282-290. doi: 10.1016/j.fas.2017.04.008. Epub 2017 Apr 24     [PubMed PMID: 29409210]


[27]

Shibuya N, Davis ML, Jupiter DC. Epidemiology of foot and ankle fractures in the United States: an analysis of the National Trauma Data Bank (2007 to 2011). The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons. 2014 Sep-Oct:53(5):606-8. doi: 10.1053/j.jfas.2014.03.011. Epub 2014 Apr 29     [PubMed PMID: 24785202]


[28]

Amin S, Achenbach SJ, Atkinson EJ, Khosla S, Melton LJ 3rd. Trends in fracture incidence: a population-based study over 20 years. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2014 Mar:29(3):581-9. doi: 10.1002/jbmr.2072. Epub     [PubMed PMID: 23959594]


[29]

Miller AN, Prasarn ML, Dyke JP, Helfet DL, Lorich DG. Quantitative assessment of the vascularity of the talus with gadolinium-enhanced magnetic resonance imaging. The Journal of bone and joint surgery. American volume. 2011 Jun 15:93(12):1116-21. doi: 10.2106/JBJS.J.00693. Epub     [PubMed PMID: 21776548]


[30]

Oppermann J, Franzen J, Spies C, Faymonville C, Knifka J, Stein G, Bredow J. The microvascular anatomy of the talus: a plastination study on the influence of total ankle replacement. Surgical and radiologic anatomy : SRA. 2014 Jul:36(5):487-94. doi: 10.1007/s00276-013-1219-9. Epub 2013 Oct 27     [PubMed PMID: 24162267]


[31]

Xue Y, Zhang H, Pei F, Tu C, Song Y, Fang Y, Liu L. Treatment of displaced talar neck fractures using delayed procedures of plate fixation through dual approaches. International orthopaedics. 2014 Jan:38(1):149-54. doi: 10.1007/s00264-013-2164-2. Epub 2013 Dec 3     [PubMed PMID: 24297608]


[32]

Attiah M, Sanders DW, Valdivia G, Cooper I, Ferreira L, MacLeod MD, Johnson JA. Comminuted talar neck fractures: a mechanical comparison of fixation techniques. Journal of orthopaedic trauma. 2007 Jan:21(1):47-51     [PubMed PMID: 17211269]