Back To Search Results

Advancement Flaps

Editor: Martha Council Updated: 3/7/2023 5:23:49 PM


Local, random pattern flaps are workhorse reconstructive options for cutaneous defects. Advancement flaps are conceptually the simplest local flaps and fall within the group of sliding flaps, along with rotation flaps. [1][2][3] For these sliding flaps, the tissue is moved or "slid" directly into the adjacent defect without "jumping" over the interposed tissue. 

Anatomy and Physiology

Register For Free And Read The Full Article
Get the answers you need instantly with the StatPearls Clinical Decision Support tool. StatPearls spent the last decade developing the largest and most updated Point-of Care resource ever developed. Earn CME/CE by searching and reading articles.
  • Dropdown arrow Search engine and full access to all medical articles
  • Dropdown arrow 10 free questions in your specialty
  • Dropdown arrow Free CME/CE Activities
  • Dropdown arrow Free daily question in your email
  • Dropdown arrow Save favorite articles to your dashboard
  • Dropdown arrow Emails offering discounts

Learn more about a Subscription to StatPearls Point-of-Care

Anatomy and Physiology

Flap Vascularity 

A flap’s survival depends on the delivery of oxygenated blood to the leading edges of the flap. Perfusion of blood through the vascular plexuses decreases as the distance from the feeding artery or arteriole increases. The portions of an advancement flap most vulnerable to necrosis are the distal tip since it has fewer blood vessels to nourish it and is most distant from the feeding artery or arteriole, and the portion of the flap sutured under the greatest tension since the tension from the closure results in compressive forces on blood vessels. [4][5][6]

The ratio of the length of the flap to the width of its pedicle impacts blood flow. As a general guideline, random pattern flaps on the face can sustain a 3:1 length to width ratio, while those on the trunk and extremities may be best designed with a 2:1 ratio. However, these guidelines are not absolute. 

The anatomic plane of flap elevation also impacts the flap’s blood supply. Deeper undermining plans include larger caliber arteries with greater perfusion pressures, but critical anatomic structures, such as branches of the facial nerve, may be damaged. Ideal undermining plans for advancement flaps balance flap vascularity with the risk of damaging critical anatomic structures. For the majority of advancement flaps on the lateral face, the preferred anatomic plane is just above the superficial musculoaponeurotic system (SMAS). On the nose, flap elevation and undermining are commonly performed in a deeper and relatively avascular tissue plane, just above the nasal bone or nasal cartilage.


Advancement flaps are modified linear closures with one, or both, apical standing cones moved to the side. When a free margin, such as the eyelid, lip, or alar rim, or cosmetic subunit junction, such as the nasolabial fold or orbitomalar groove, would be violated by a linear closure; advancement flaps may be utilized to direct the standing cones away from these natural boundaries (Figure 1). Additionally, advancement flaps often camouflage scars by placing incision lines along natural creases or cosmetic subunit junctions. Common locations for advancement flaps include the upper and lower cutaneous lip, the nasal sidewall, the infraorbital cheek, and the lower eyelid, the forehead and temple, the preauricular cheek, and the helical rim. [7][8][9]


Patients with wounds that are too large to be closed with the adjacent tissue should be considered more appropriate candidates for reconstructive techniques that recruit skin from more distant tissue reservoirs; for example, transposition flaps, interpolated flaps, pedicled tissue transfer, and skin grafts.


No special surgical equipment is required for performing advancement flaps.


Preoperative Preparation

The surgical site is cleansed with a preoperative cleansing solution of the surgeon's choice, and typically, a sterile field is created. For cutaneous surgery, there are multiple case series demonstrating that a "clean," as opposed to a truly "sterile" technique, results in similar rates of postoperative infection.

Patient Counseling

As with any closure, setting realistic expectations before surgery helps patients prepare for the normal healing process. Beyond typical counseling for infection, bruising, swelling, and scar formation, a few unique situations warrant extra counseling. Advancement flaps on the lower eyelid occasionally are complicated by prolonged postoperative swelling that may take months to completely resolve.  Also, incision lines that fall along natural grooves or creases camouflage well in the long run, but they may be noticeable in the early postoperative if the wound edges are everted. The "tincture of time" and occasional use of intralesional corticosteroids usually corrects the eversion.

Technique or Treatment

Tension Vector

The direction in which the flap slides toward the defect is called the primary tissue motion, and the countermovement of the surrounding tissue to meet the flap is considered secondary tissue motion. As opposed to rotation and transposition flaps, advancement flaps do not significantly alter the direction or magnitude of the primary tension vector for wound closure. Both the site of maximal tension and the magnitude of the tension vector required to close an advancement flap is nearly identical to a linear closure in the same location for a given defect. Occasionally, tacking sutures that anchor the flap to immobile deeper structures, such as the orbital rim, or superficial musculoaponeurotic system plication sutures can be used to offset some of the wound closure tension away from the defect. 

Standing Cones

The standing cones created by an advancement flap may be handled with multiple strategies. Often the entire standing cone is moved laterally in one or two directions. Also, a small standing cone or a portion of a large standing cone can be "sewn out" using the rule of halves along the base of the flap. Alternately, the standing cone may be removed in a crescentic fashion, especially along the Vermillion cutaneous junction and the nasolabial fold or alar groove. 

Altering the Defect to Optimize Advancement Flaps

When closing defects arise after the removal of a tumor, especially after Mohs surgery, an initial consideration is whether the surgeon should deepen the defect to a uniform anatomic depth. Deepening the defect to a uniform depth that corresponds to the anatomic plane for undermining permits efficient surgery and ensures that the tissue that "slides" into the wound matches the thickness of the defect.  

While not always necessary or preferred, excising tissue between the surgical defect and a nearby cosmetic subunit junction may be helpful. Placing scar lines along cosmetic subunit junctions camouflage scars by hiding them in natural creases and shadows. To motivate this principle with an example, consider the upper cutaneous lip. In this location, relaxed skin tension lines emanate radially from the vermilion-cutaneous junction, and horizontal scars on the cutaneous lip may be very noticeable. Enlarging a wound from the middle of the upper cutaneous lip to the vermilion helps to hide the base of the advancement flap in the vermilion-cutaneous junction.


Infection is the most common complication after flap closure, but it appears to be relatively independent of surgical closure technique (sterile versus clean) according to the Mohs surgery literature. In many instances, infection ensues at the site of flap necrosis. The appropriate depth of flap undermining can minimize this risk. Bleeding with potential hematoma formation is the next most common complication. However, even in patients on multiple blood thinners, hematomas are rare with appropriate intraoperative hemostasis. Lastly, displacement of free margins, such as the eyelid, lip, or nasal alar margin, is a predictable result from flap designs that place tension on these freely mobile structures. To avoid "pulling" on a free margin, the primary tension vector for closure should be parallel to the free margin. [5][10][11]

Clinical Significance

Advancement flaps are a versatile reconstruction that permits scar camouflage along cosmetic subunit junctions. Advancement flap design and execution require mastery of a few key concepts: the direction of the primary tension vector, handling the displaced standing cone(s), balancing factors that impact flap vascularity, and deciding when to alter the defect.

Enhancing Healthcare Team Outcomes

Advancement flaps are usually performed by the plastic surgeon. These flaps play a vital role in wound coverage. the monitoring of patients with advancement flaps is usually done by nurses trained in surgery. The key is to inform the plastic surgeon ASAP when the flap has poor perfusion or is showing signs of flap necrosis. The advancement flaps have to be monitored until complete healing has occurred.[12][13]


(Click Image to Enlarge)
<p>Standing Cone Redirection Using Advancement Flaps</p>

Standing Cone Redirection Using Advancement Flaps

Contributed by Jeremy Etzkorn, MD

(Click Image to Enlarge)
<p>Latissimus Dorsi Flap</p>

Latissimus Dorsi Flap

Contributed by Sunil Munakomi, MD

(Click Image to Enlarge)
<p>Keystone Flap</p>

Keystone Flap

Contributed by Sunil Munakomi, MD



Zeitels SM, Hillman RE. A Method for Reconstruction of Anterior Commissure Glottal Webs With Endoscopic Fibro-Mucosal Flaps. The Annals of otology, rhinology, and laryngology. 2019 Mar:128(3_suppl):82S-93S. doi: 10.1177/0003489418820031. Epub     [PubMed PMID: 30843433]


Abramo AC, Lucena TW, Sgarbi RG, Scartozzoni M. Mastopexy Autoaugmentation by Using Vertical and Triangular Flaps of Mammary Parenchyma Through a Vertical Ice Cream Cone-Shaped Approach. Aesthetic plastic surgery. 2019 Jun:43(3):584-590. doi: 10.1007/s00266-019-01337-1. Epub 2019 Mar 6     [PubMed PMID: 30843097]


Billington A, Dayicioglu D, Smith P, Kiluk J. Review of Procedures for Reconstruction of Soft Tissue Chest Wall Defects Following Advanced Breast Malignancies. Cancer control : journal of the Moffitt Cancer Center. 2019 Jan-Dec:26(1):1073274819827284. doi: 10.1177/1073274819827284. Epub     [PubMed PMID: 30808195]


Deng M, Higgins HW 2nd, Lesiak K, Decker AB, Regula CG, Stevenson ML, Raphael B, Depry J, Scott JF, Bangash H, Ochoa SA, Ibrahimi OA, Shafai A, Bordeaux JS, Carucci JA, Cook JL, Goldman GD, Rohrer TE, Lawrence N. Expertise in Head and Neck Cutaneous Reconstructive Surgery. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.]. 2019 Jun:45(6):782-790. doi: 10.1097/DSS.0000000000001844. Epub     [PubMed PMID: 30829776]


Karjalainen T, Sebastin SJ, Chee KG, Peng YP, Chong AKS. Flap Related Complications Requiring Secondary Surgery in a Series of 851 Local Flaps Used for Fingertip Reconstruction. The journal of hand surgery Asian-Pacific volume. 2019 Mar:24(1):24-29. doi: 10.1142/S242483551950005X. Epub     [PubMed PMID: 30760139]


Myers PL, Krasniak PJ, Day SJ, Bossert RP. Gluteal Flaps Revisited: Technical Modifications for Perineal Wound Reconstruction. Annals of plastic surgery. 2019 Jun:82(6):667-670. doi: 10.1097/SAP.0000000000001771. Epub     [PubMed PMID: 30633016]


Jennings JJ, Shaffer AD, Stapleton AL. Pediatric nasal septal perforation. International journal of pediatric otorhinolaryngology. 2019 Mar:118():15-20. doi: 10.1016/j.ijporl.2018.12.001. Epub 2018 Dec 4     [PubMed PMID: 30578990]


Cass ND, Terella AM. Reconstruction of the Cheek. Facial plastic surgery clinics of North America. 2019 Feb:27(1):55-66. doi: 10.1016/j.fsc.2018.08.007. Epub     [PubMed PMID: 30420073]


Angeles MA, Martínez-Gómez C, Migliorelli F, Voglimacci M, Figurelli J, Motton S, Tanguy Le Gac Y, Ferron G, Martinez A. Novel Surgical Strategies in the Treatment of Gynecological Malignancies. Current treatment options in oncology. 2018 Nov 9:19(12):73. doi: 10.1007/s11864-018-0582-5. Epub 2018 Nov 9     [PubMed PMID: 30411170]

Level 2 (mid-level) evidence


Tomás-Velázquez A, Redondo P. Assessment of Frontalis Myocutaneous Transposition Flap for Forehead Reconstruction After Mohs Surgery. JAMA dermatology. 2018 Jun 1:154(6):708-711. doi: 10.1001/jamadermatol.2018.1213. Epub     [PubMed PMID: 29799979]


Hand LC, Maas TM, Baka N, Mercier RJ, Greaney PJ, Rosenblum NG, Kim CH. Utilizing V-Y fasciocutaneous advancement flaps for vulvar reconstruction. Gynecologic oncology reports. 2018 Nov:26():24-28. doi: 10.1016/j.gore.2018.08.007. Epub 2018 Aug 24     [PubMed PMID: 30186930]


Kim GW, Bae YC, Kim JH, Nam SB, Kim HS. Usefulness of the orbicularis oculi myocutaneous flap in periorbital reconstruction. Archives of craniofacial surgery. 2018 Dec:19(4):254-259. doi: 10.7181/acfs.2018.02019. Epub 2018 Dec 27     [PubMed PMID: 30613086]


Habiba NU, Khan AH, Khurram MF, Khan MK. Treatment options for partial auricle reconstruction: a prospective study of outcomes and patient satisfaction. Journal of wound care. 2018 Sep 2:27(9):564-572. doi: 10.12968/jowc.2018.27.9.564. Epub     [PubMed PMID: 30204580]