Back To Search Results

Ablative Nerve Block

Editor: Fassil B. Mesfin Updated: 4/10/2023 3:00:50 PM

Introduction

In 1975, ablation was initially used to treat chronic back pain and sciatica of unknown etiology as an alternative to the prior treatment of severing the dorsal rami via the intertransverse ligaments. It is a minimally invasive procedure that involves coagulation necrosis of afferent nociceptive signals via high-frequency waves (300 to 500 Hz).

Currently, ablation is most commonly used to destroy the medial branches of the dorsal rami, which are responsible for facet-joint-mediated back pain. Ablative nerve blocks are commonly used in the treatment of chronic low back pain. However, their efficacy is mixed at best. The most benefit is the short term within the first four weeks following the procedure.[1] However, significant relief of pain has been shown to last up to a year.[2] Many studies do not show superiority over placebo for either pain relief or functional improvement.[3][4] There is also evidence for its use for chronic discogenic back pain.[5]

However, the ablation of peripheral nerves that have a primary role in nociception for the treatment of pain is supported by the recent literature, particularly when symptomatology has been refractory to conservative management but is relieved with targeted blocks using short-acting anesthetic agents.[6]

Anatomy and Physiology

Register For Free And Read The Full Article
Get the answers you need instantly with the StatPearls Clinical Decision Support tool. StatPearls spent the last decade developing the largest and most updated Point-of Care resource ever developed. Earn CME/CE by searching and reading articles.
  • Dropdown arrow Search engine and full access to all medical articles
  • Dropdown arrow 10 free questions in your specialty
  • Dropdown arrow Free CME/CE Activities
  • Dropdown arrow Free daily question in your email
  • Dropdown arrow Save favorite articles to your dashboard
  • Dropdown arrow Emails offering discounts

Learn more about a Subscription to StatPearls Point-of-Care

Anatomy and Physiology

Facet-mediated pain is due to facet arthropathy or facet arthritis which arise during the degenerative process of the spinal column. A single facet joint is composed of the inferior articulating process of one vertebra and the superior articulating process of the vertebra directly inferior.

Medial branches from the dorsal rami of spinal nerve roots at the same level and one level above provide sensory innervation to the facet (for example, the L4-L5 facet joint is innervated by the medial branches of L3 and L4). The medial branches typically course over the lateral border of the superior articulating process.

An insulated electrode with a non-insulated tip is advanced toward the concavity that is formed between the superior articulating process and the adjacent transverse process, which is in proximity to the nerve that is suspected of causing the symptoms. It is in this region where the use of high-frequency or radiofrequency energy is generated to produce a lesion via coagulative necrosis, thereby disrupting afferent pain signals. In Pain Medicine, the use of radiofrequency ablation most commonly involves targeting the specific medial branches of the dorsal rami that innervate pain-producing facet joints under fluoroscopic guidance. However, further investigations regarding the efficacy of ablation in other common pain syndromes continue to diversify its use.[7][6]

Indications

Nerve ablation has typically been used to treat facet-mediated axial back pain of the cervical and lumbar spine that has failed conservative therapy.

Additionally, it has other uses, such as relief of chronic neck pain after whiplash and chronic headache syndromes due to occipital and trigeminal neuralgia. Ablation is performed after successful analgesia of the suspected trouble-causing nerve with a local anesthetic. There continue to study investigating the role of ablation in peripheral nerve-mediated pain outside of the spinal column, particularly in knee osteoarthritis and plantar fasciitis.[8][9] Ablative nerve blocks, with cooled radiofrequency ablation of the genicular nerve, are an effective pain reliever for refractory osteoarthritis of the knee. Furthermore, it has been shown to improve knee function for up to six months following the procedure.[10]

Contraindications

Absolute contraindications for ablative nerve blocks are few, but these include active local infection at the site of needle insertion and elevated intracranial pressure. The use of anti-coagulants provides a unique challenge for practitioners, as the clinical judgment must be used following accepted guidelines. Current guidelines put forth by ASRA (American Society of Regional Anesthesia and Pain Medicine) recommend that:

  • Aspirin to be stopped 6 days before the procedure
  • Clopidogrel to be stopped 7 days before the procedure
  • Apixaban to be stopped 3 to 5 days before the procedure
  • Rivaroxaban to be stopped 3 days before the procedure
  • Warfarin to be stopped 5 days before the procedure
  • Intravenous heparin to be stopped 4 hours before the procedure

Other relative contraindications that the clinician must consider before the procedure include:

  • Neurologic abnormalities
  • Concerning clinical or imaging finding
  • Definitive causes of low back pain (for example, disc herniation, spondylolisthesis, spondylosis, spinal stenosis, malignancy, infection, or trauma)
  • Lack of pain relief from prior diagnostic nerve blocks[11]

Equipment

The procedure is routinely done in a sterile procedure suite, with the patient lying prone on a procedure table.

 Key components of the procedure include:

  • C-arm mobile fluoroscopic unit
  • Local anesthetic
  • continuous high-frequency generator with the built-in thermocouple, impedance, voltage, and amperage monitor
  • Introducer needles (50 to 150 mm in length, 18 to 22 gauge in diameter)
  • Active and ground electrodes

The active electrode delivers the high-frequency current, which is dissipated through a ground electrode attached to the patient.

Personnel

As with other interventional spinal procedures, only physicians specifically trained in fluoroscopically guidance procedures should perform radiofrequency ablation. Qualified physicians typically undergo residency training in anesthesiology, physiatry, neurology, psychiatry, or neurosurgery. This is followed by an interventional pain or spine fellowship that allows adequate training under an experienced interventionalist before performing the procedure independently. Support staff for the procedure can include an assistant to draw up medications and operate the radiofrequency generator and a radiology technician to operate the C-arm under the guidance of the practicing physician.

Technique or Treatment

The destruction of tissue via radiofrequency must occur after successful diagnostic anesthetic nerve blocks have located the target nerve. During the procedure, the patient should receive little to no sedation, as they must define what they are experiencing during stimulation and lesioning of the nerve.

  1. The patient is placed in a comfortable position with adequate exposure of the region overlying the target nerve. The skin is cleaned and prepped, and the target is found using fluoroscopy. A small amount of local anesthetic is injected subcutaneously at the point of needle insertion.
  2. The introducer needle is then inserted through the skin, subcutaneous tissue, and muscle toward the target using fluoroscopy to guide the trajectory.
  3. Once the tip of the needle is placed satisfactorily close to the target, the active electrode is inserted through the needle.
  4. Sensory stimulation is used at first to recreate the painful symptoms that the patient experiences, thus locating the target. 
  5. This is followed by motor stimulation to ensure that the active tip is not close to the motor nerves.
  6. Once confirmed, the generator produces a continuous output of voltage at the tip of the electrode. It will be kept at 80 degrees Celsius for approximately one minute, creating a zone of thermally induced coagulation.[12]

Complications

Nerve ablation is a minimally invasive, relatively low-risk procedure. There is a limited side effect profile to ablative nerve blocks.[13] However, adverse events may occur during the placement of the introducer needle or during the ablative process. Advancement of the introducer needle has the potential to cause vascular or neural insult along the trajectory that it is traveling, while the process of thermal ablation may lead to burns (due to errors in ground pad placement), worsened pain, sensory loss, or new-onset neuropathic pain.[11][14]

Complications are most common after intracranial ablation of the trigeminal ganglion, which may manifest as facial numbness, dysesthesia, anesthesia dolorosa, corneal anesthesia, keratitis, and trigeminal motor dysfunction.

Adverse events from ablation of lumbar medial branches are far and few between, with transient postoperative pain dominating as the premier adverse event.

As with any invasive technique, the risk of allergy to materials or anesthetic, hematoma formation, and infection must be considered.

Clinical Significance

One hundred million Americans suffer from some form of chronic pain that results in more than $100 billion in expenses annually. Furthermore, 84% of American adults will suffer from chronic, low-back pain at some point in their lifetime. While the causes of low-back pain are often multifactorial and can be due to many causes, the degenerative cascade that affects the spine plays a significant role. Destruction of cartilage that comprises the spinal facet joints results in severe discomfort when placed under stress, typically in extension or rotation of the spine. The sensory nerves responsible are the medial branches of the dorsal rami, which are the most common target in ablative procedures. Radiofrequency ablation is efficacious in reducing the severity of back pain for extended periods of time (ranging from 6 months to 24 months in duration). It has utility in treating trigeminal and occipital neuralgia, complex regional pain syndrome, hip and knee osteoarthritis, and plantar fasciitis. As with other interventional procedures that provide pain relief, ablation aims to play a significant role in reducing opiates and other habit-forming pain medications.

This review focuses on conventional radiofrequency ablation, which utilizes a continuous energy source causing coagulative thermal necrosis. Other forms of ablation used in pain management include:

  • Pulsed radiofrequency: Applies heat in a pulsatile manner but uses lower temperatures than conventional radiofrequency to avoid neurolysis.
  • Cooled radiofrequency: Utilizes specialized electrodes cooled with water-flowing along its shaft but not at the active tip. This allows higher temperatures and more spherical lesion sizes to be achieved at the target site and less risk of tissue damage superficial to the target.
  • Cryoablation: Causes the destruction of axons by disrupting the vasa nervorum. It increases in popularity due to a decreased incidence of post-procedural hyperalgesia and neuroma formation compared to conventional radiofrequency.

Cases of the use of ablative nerve blocks have been used for intercostal neuralgia with success.[15] Ablative nerve blocks of the genicular nerve for chronic new pain have also been shown to be an effective pain reliever for chronic, refractory knee pain.[16] Patients who undergo ablation of the genicular nerve have been shown to have proved pain for up to six months following the procedure.[17] Furthermore, studies have been done regarding the effectiveness of ablative techniques on cancer pain as well. Results have shown blocks to be effective for upper abdominal cancers such as gastric or pancreatic cancer.[18] Chronic pericranial headache pain has also been studied and shows evidence of radiofrequency ablation of the pericranial nerves.[19] One promising 2016 study looked at radiofrequency ablation in the treatment of vertebral compression fractures as well. However, more studies need to be done.[20] There is limited effectiveness for the use of ablative nerve blocks for facet joint osteoarthritis compared to placebo.[21]

Enhancing Healthcare Team Outcomes

Nerve ablation for back pain is commonly done as an outpatient but still requires the efforts of an interprofessional team. While a physician does the actual ablation, patient monitoring is frequently done by a dedicated nurse/nurse anesthetist. The patient must have the vital signs monitored at regular intervals, and if any sedation is used, the pulse oximeter must be continuously monitored; these duties will often fall to the nursing staff to report any incongruities promptly. Intravenous access should be in place in case the patient develops hypotension or requires more sedation. Finally, if conscious sedation is used, the antidotes to the medications used must be in the room. After the procedure, the patient should be monitored in the recovery room for several hours by the post-anesthesia recovery nurse. Before discharge, the patient should be informed about the possible side effects of the procedure and when to return to the hospital. Interprofessional teamwork will result in improved patient outcomes.[22] [Level 5]

References


[1]

Leclaire R, Fortin L, Lambert R, Bergeron YM, Rossignol M. Radiofrequency facet joint denervation in the treatment of low back pain: a placebo-controlled clinical trial to assess efficacy. Spine. 2001 Jul 1:26(13):1411-6; discussion 1417     [PubMed PMID: 11458140]

Level 1 (high-level) evidence

[2]

Cohen SP, Hurley RW, Buckenmaier CC 3rd, Kurihara C, Morlando B, Dragovich A. Randomized placebo-controlled study evaluating lateral branch radiofrequency denervation for sacroiliac joint pain. Anesthesiology. 2008 Aug:109(2):279-88. doi: 10.1097/ALN.0b013e31817f4c7c. Epub     [PubMed PMID: 18648237]

Level 1 (high-level) evidence

[3]

van Wijk RM, Geurts JW, Wynne HJ, Hammink E, Buskens E, Lousberg R, Knape JT, Groen GJ. Radiofrequency denervation of lumbar facet joints in the treatment of chronic low back pain: a randomized, double-blind, sham lesion-controlled trial. The Clinical journal of pain. 2005 Jul-Aug:21(4):335-44     [PubMed PMID: 15951652]

Level 1 (high-level) evidence

[4]

Maas ET, Ostelo RW, Niemisto L, Jousimaa J, Hurri H, Malmivaara A, van Tulder MW. Radiofrequency denervation for chronic low back pain. The Cochrane database of systematic reviews. 2015 Oct 23:2015(10):CD008572. doi: 10.1002/14651858.CD008572.pub2. Epub 2015 Oct 23     [PubMed PMID: 26495910]

Level 3 (low-level) evidence

[5]

Oh WS, Shim JC. A randomized controlled trial of radiofrequency denervation of the ramus communicans nerve for chronic discogenic low back pain. The Clinical journal of pain. 2004 Jan-Feb:20(1):55-60     [PubMed PMID: 14668658]

Level 1 (high-level) evidence

[6]

Choi EJ, Choi YM, Jang EJ, Kim JY, Kim TK, Kim KH. Neural Ablation and Regeneration in Pain Practice. The Korean journal of pain. 2016 Jan:29(1):3-11. doi: 10.3344/kjp.2016.29.1.3. Epub 2016 Jan 4     [PubMed PMID: 26839664]


[7]

Senthelal S, Dydyk AM, Mesfin FB. Ablative Nerve Block. StatPearls. 2024 Jan:():     [PubMed PMID: 29763150]


[8]

Zakrzewska JM, Akram H. Neurosurgical interventions for the treatment of classical trigeminal neuralgia. The Cochrane database of systematic reviews. 2011 Sep 7:2011(9):CD007312. doi: 10.1002/14651858.CD007312.pub2. Epub 2011 Sep 7     [PubMed PMID: 21901707]

Level 1 (high-level) evidence

[9]

Saedi N, Hamilton HK, Arndt KA, Dover JS. How to prepare patients for ablative laser procedures. Journal of the American Academy of Dermatology. 2013 Aug:69(2):e49. doi: 10.1016/j.jaad.2013.04.019. Epub     [PubMed PMID: 23866890]


[10]

McCormick ZL, Reddy R, Korn M, Dayanim D, Syed RH, Bhave M, Zhukalin M, Choxi S, Ebrahimi A, Kendall MC, McCarthy RJ, Khan D, Nagpal G, Bouffard K, Walega DR. A Prospective Randomized Trial of Prognostic Genicular Nerve Blocks to Determine the Predictive Value for the Outcome of Cooled Radiofrequency Ablation for Chronic Knee Pain Due to Osteoarthritis. Pain medicine (Malden, Mass.). 2018 Aug 1:19(8):1628-1638. doi: 10.1093/pm/pnx286. Epub     [PubMed PMID: 29300971]


[11]

Djebbar S, Rossi IM, Adler RS. Ultrasound-Guided Cryoanalgesia of Peripheral Nerve Lesions. Seminars in musculoskeletal radiology. 2016 Nov:20(5):461-471. doi: 10.1055/s-0036-1596063. Epub 2016 Dec 21     [PubMed PMID: 28002868]


[12]

Chang KV, Hung CY, Wang TG, Yang RS, Sun WZ, Lin CP. Ultrasound-Guided Proximal Suprascapular Nerve Block With Radiofrequency Lesioning for Patients With Malignancy-Associated Recalcitrant Shoulder Pain. Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine. 2015 Nov:34(11):2099-105. doi: 10.7863/ultra.14.12042. Epub 2015 Oct 9     [PubMed PMID: 26453125]


[13]

Tekin I, Mirzai H, Ok G, Erbuyun K, Vatansever D. A comparison of conventional and pulsed radiofrequency denervation in the treatment of chronic facet joint pain. The Clinical journal of pain. 2007 Jul-Aug:23(6):524-9     [PubMed PMID: 17575493]

Level 1 (high-level) evidence

[14]

Toukhy ME, Campkin NT. Severe diarrhea following neurolytic coeliac plexus block: case report and literature review. The American journal of hospice & palliative care. 2011 Nov:28(7):511-4. doi: 10.1177/1049909111402185. Epub 2011 Mar 21     [PubMed PMID: 21422068]

Level 3 (low-level) evidence

[15]

Abd-Elsayed A, Lee S, Jackson M. Radiofrequency Ablation for Treating Resistant Intercostal Neuralgia. Ochsner journal. 2018 Spring:18(1):91-93     [PubMed PMID: 29559878]


[16]

Jamison DE, Cohen SP. Radiofrequency techniques to treat chronic knee pain: a comprehensive review of anatomy, effectiveness, treatment parameters, and patient selection. Journal of pain research. 2018:11():1879-1888. doi: 10.2147/JPR.S144633. Epub 2018 Sep 18     [PubMed PMID: 30271194]


[17]

Iannaccone F, Dixon S, Kaufman A. A Review of Long-Term Pain Relief after Genicular Nerve Radiofrequency Ablation in Chronic Knee Osteoarthritis. Pain physician. 2017 Mar:20(3):E437-E444     [PubMed PMID: 28339444]


[18]

Amr SA, Reyad RM, Othman AH, Mohamad MF, Mostafa MM, Alieldin NH, Hamed FA. Comparison between radiofrequency ablation and chemical neurolysis of thoracic splanchnic nerves for the management of abdominal cancer pain, randomized trial. European journal of pain (London, England). 2018 Nov:22(10):1782-1790. doi: 10.1002/ejp.1274. Epub 2018 Jul 11     [PubMed PMID: 29975804]


[19]

Abd-Elsayed A, Kreuger L, Wheeler S, Robillard J, Seeger S, Dulli D. Radiofrequency Ablation of Pericranial Nerves for Treating Headache Conditions: A Promising Option for Patients. Ochsner journal. 2018 Spring:18(1):59-62     [PubMed PMID: 29559871]


[20]

Solberg J, Copenhaver D, Fishman SM. Medial branch nerve block and ablation as a novel approach to pain related to vertebral compression fracture. Current opinion in anaesthesiology. 2016 Oct:29(5):596-9. doi: 10.1097/ACO.0000000000000375. Epub     [PubMed PMID: 27548307]


[21]

Cohen SP, Doshi TL, Constantinescu OC, Zhao Z, Kurihara C, Larkin TM, Griffith SR, Jacobs MB, Kroski WJ, Dawson TC, Fowler IM, White RL, Verdun AJ, Jamison DE, Anderson-White M, Shank SE, Pasquina PF. Effectiveness of Lumbar Facet Joint Blocks and Predictive Value before Radiofrequency Denervation: The Facet Treatment Study (FACTS), a Randomized, Controlled Clinical Trial. Anesthesiology. 2018 Sep:129(3):517-535. doi: 10.1097/ALN.0000000000002274. Epub     [PubMed PMID: 29847426]


[22]

Zakrzewska JM, Linskey ME. Trigeminal neuralgia. BMJ clinical evidence. 2009 Mar 12:2009():. pii: 1207. Epub 2009 Mar 12     [PubMed PMID: 19445753]

Level 1 (high-level) evidence