Back To Search Results

Aerospace Decompression Illness

Editor: Jeffrey S. Cooper Updated: 9/4/2022 5:06:25 AM


Decompression illness can occur after exposure to reduced environmental pressure in situations involving diving and aviation as well. High altitudes can expose flight crews and individuals to the risk of decompression illness. The general pathophysiology involves gas, such as nitrogen, forming bubbles in tissue, which is responsible for the symptoms ranging from relatively minor symptoms to profound neurologic manifestations.  [1][2][3]

Traditionally, decompression sickness (DCS) is categorized as type 1, referring to skin changes and milder symptoms such as joint pain, or type 2, referring to more severe symptoms involving the neurologic, cardiac, and pulmonary systems. Some difficulties with that naming system have led to a more specified system that refers to the patient’s involved organ systems, such as musculoskeletal, cutaneous, neurologic, or cardiopulmonary subtypes.


Register For Free And Read The Full Article
Get the answers you need instantly with the StatPearls Clinical Decision Support tool. StatPearls spent the last decade developing the largest and most updated Point-of Care resource ever developed. Earn CME/CE by searching and reading articles.
  • Dropdown arrow Search engine and full access to all medical articles
  • Dropdown arrow 10 free questions in your specialty
  • Dropdown arrow Free CME/CE Activities
  • Dropdown arrow Free daily question in your email
  • Dropdown arrow Save favorite articles to your dashboard
  • Dropdown arrow Emails offering discounts

Learn more about a Subscription to StatPearls Point-of-Care


Decompression sickness that occurs with high-altitude exposure such as in aviation can happen through various mechanisms. The first is by exposure to a high-altitude chamber such as is used by military organizations. The second is through exposure to altitude without proper aircraft or suit pressurization. Commercial aircraft typically have a pressurized cabin; however, failure of that system or noncommercial air travel can lead to decompression sickness. A third mechanism is due to the pressure difference as can occur with breath holding during scuba diving or with an individual who was to scuba dive and then fly a commercial flight in a short period. Current recommendations recommend a wait time period of 12 hours after a single dive before flying and 18 hours after multiple dives. For simplicity, generalized recommendations of 24 hours between diving and flying is also often quoted. The sudden exposure to a cabin pressure of around 7000 feet, termed rapid decompression, may cause decompression sickness. It is important to note that decompression sickness still can occur in individuals who follow standard decompression procedures before flying.[4][5]


It is difficult to determine accurate rates of decompression sickness secondary to aviation and altitude exposure, as there have been reports of potential cases that are not characterized as altitude-exposure decompression illnesses. One publication noted 63 cases of individuals who experienced decompression sickness from flying after a dive over a 4-year period. With that noted, in one study involving 2001 subjects, the rate of people experiencing any form of decompression illness following altitude exposure from an altitude chamber was 40%. Of individuals experiencing decompression sickness, the majority of symptoms were joint pain (72.8%) or paresthesias (12.6%). 3.4% of people who experienced decompression sickness secondary to altitude in that study experienced symptoms that were classified as neurologic or respiratory. 1.3% of individuals experienced recurrent symptoms. The studies revealed a low rate (3.4%) of individuals experiencing neurologic or respiratory symptoms though did not include paresthesias, which have been noted to be a neurologic symptom by others. When considering neurologic symptoms that include a headache and paresthesia, the rates may be closer to 14% to 34% of cases.[6][7]

Individuals flying a military or private flight may be exposed to high-altitude situations predisposing them to a decompression illness. Approximately 30% of the time flying between 18,000 ft and 30,000 ft results in symptoms with a much higher percentage when flying at altitudes between 30,000 ft to 45,000 feet.

Aside from straightforward factors such as altitude or time from the last dive, other factors have been noted to affect the risk of decompression sickness. Gender has not been found to be a risk factor. Other risk factors for decompression illness include dehydration, fatigue, poor conditioning, higher body mass index, increased age, and presence of a right to left shunt such as a patent foramen ovale.


Decompression sickness occurs as a result of gas bubbles, referred to as evolved gas emboli, forming in tissues that can exert pressure on nerves, block blood vessels, and interact with proteins. There are two basic gas laws that explain this phenomenon.  Boyle’s law states that gas volume is inversely related to the pressure to which it is subjected, explaining the etiology of air embolism and barotrauma.  Henry’s law states that the amount of gas dissolved in liquid is directly proportional to the gas’s partial pressure, explaining the mechanism of decompression illness and nitrogen narcosis. Decompression illness can result in varying severity of symptoms that include pain and skin changes as well as neurologic and cardiopulmonary symptoms. The gas emboli form as a result of inert gas (nitrogen) that is dissolved in tissues at ground level, becomes supersaturated at altitude, and develops into bubbles. One interesting factor is that not all tissue dissolves gas at the same rate, with fat dissolving at least fivefold the nitrogen dissolved in blood.

Secondary effects also can occur, which may in part be responsible for some of those with delayed development of certain symptoms. Bubbles can cause endothelial damage, resulting in a capillary leak, platelet activation; and deposition is possible, as are other processes such as leukocyte-endothelial adhesion.

History and Physical

The history of a patient presenting with decompression sickness will often involve some aspect of recent diving, flight, non-commercial air travel, or altitude chamber use. The important thing to recognize is that not all individuals will understand the importance of these aspects of their history, so they may not volunteer it.

Specific symptoms patients may complain about depend on the location of the bubbles, with the most common being musculoskeletal symptoms presenting as joint pain – also colloquially known as “the bends” – that can be mild to severe. Respiratory issues can occurs due to vascular bubbles trapped in the pulmonary capillaries causing respiratory distress symptoms called “the chokes.” Patients may also complain of skin changes, headaches, paresthesias, and respiratory issues. A particular skin manifestation of decompression sickness is cutis marmorata, also called livedo reticularis, which is the result of skin tissue damage caused by gas bubbles forming during decompression. More profound presentations, while less common, can occur with altered mentation and severe neurologic or cardiopulmonary presentations possible. If neurologic signs or symptoms occur after exposure to altitude, consider decompression sickness.

Histories of rapid ascent in aviation or recent diving followed by altitude exposure are key components to a patient's history.

Important aspects of the physical exam include vitals, complete skin examination, complete neurological examination, careful lung and cardiac examination, and full evaluation of the joints.


Evaluation of a patient with suspected decompression illness relies primarily on history and physical examination since there are no specific tests to make the diagnosis.[8][9]

Treatment / Management

Treatment and management may vary depending on the grade/form of decompression sickness and the treating facility or organization. [10]

Oxygen will wash inert gas from the lungs. A gradient is formed from tissues to lungs, allowing for the removal of the inert gas by both perfusion and diffusion.

The United States Air Force has published information on using ground-level 100% oxygen therapy for 2 hours following type-1 decompression sickness that occurs at altitude if it resolves upon descent. In more severe cases, hyperbaric recompression is accomplished in hyperbaric chambers. The recompression while breathing 100% oxygen will increase the tissue to lung gradient previously mentioned and decrease the bubble volume (Boyle’s Law), leading to the resolution of inert gas tissue bubbles. Standard recompression protocols are modeled after the United States Navy tables.

Decompression sickness in aviation most commonly is seen following flights in non-pressurized aircraft, in flights with cabin pressure fluctuations, or in individuals who fly after diving. Cases also have been reported after the use of altitude chambers. The manifestations are treated as SCUBA diving decompression sickness is treated, primarily with ground level or hyperbaric oxygen. These are relatively rare clinical events, and the clinician must consider this diagnosis in the proper historical setting. Practitioners should know where local hyperbaric chambers are located as well as have the ability to consult with a physician experienced with hyperbaric medicine. The Divers' Alert Network (DAN) is an excellent source of information. 

Differential Diagnosis

Diagnostic testing to rule out other causes for a patient’s presentation may be necessary as decompression sickness can mimic many possible disease processes. For instance, in the hypoxic patient following a flight, the need to evaluate for other possible cardiac and pulmonary pathology may be warranted or an in a patient with a neurologic presentation, radiographic imaging of the brain may be indicated. The lack of a definitive diagnosis should not delay treatment and oxygen therapy should be immediately applied if decompression sickness.


The staples of DCS treatment involves administration of 100% oxygen, hydration as clinically indicated, and placement of the patient in Tredenelenburg position with the head slightly angled down.The United States Air Force has published information on using ground-level 100% oxygen therapy for 2 hours following type-1 decompression sickness that occurs at altitude if it resolves upon descent. They used hyperbaric oxygen for more severe cases and for cases of type-1 decompression sickness that did not resolve. They have reported a high success rate with this treatment, with 94% of subjects not requiring further hyperbaric therapy. Further, the majority of individuals (95.6%) experiencing minor symptoms were manageable with ground-level 100% oxygen and had their symptoms resolved before starting any form of therapy, so consider this form of therapy in an individual with minor symptoms that have resolved before starting therapy. It is important to note that those results were from an altitude-chamber study since the high frequency of rapid onset symptoms at altitude is not always expected.  Prognosis is much more improved for type-2 decompression sickness the more expedient treatment is accomplished.  Complete resolution with type-2 DCS is at 75% with about 16% having residual symptoms resolving over 3 months.  This number goes down between 57 to 75% if treatment is delayed greater than 12 hours. [11]


 The main complications from DCS is residual symptoms due to delayed treatment. The treatment itself including 100% oxygen administration, hydration, and hyperbaric chamber use for type-1 DCS that does not resolve with conservative measures or type-2 DCS is relatively safe. 

Deterrence and Patient Education

 Preventative measures to counsel patients who dive or are involved in aviation include emphasizing the importance of proper training and conditioning, remaining adequately hydrated, avoiding flights less than 24 hours after diving, ascend slowly without breath holding during diving, and being knowledgeable about individual medical conditions such as a history of a patent foramen ovale, pneumothorax or other pulmonary conditions that make activities such as diving higher risk. 

Enhancing Healthcare Team Outcomes

Decompression sickness in aviation most commonly is seen following flights in nonpressurized aircraft, in flights with cabin pressure fluctuations, or in individuals who fly after diving. Cases also have been reported after the use of altitude chambers. The manifestations are treated as SCUBA diving decompression sickness is treated, primarily with ground level or hyperbaric oxygen. These are relatively rare clinical events, and the clinician must consider this diagnosis in the proper historical setting. Practitioners should know where local hyperbaric chambers are located and how to contact hyperbaric specialists. The Divers' Alert Network (DAN) is an excellent source of information.



Shi L, Zhang YM, Tetsuo K, Shi ZY, Fang YQ, Denoble PJ, Li YY. Simulated High Altitude Helium-Oxygen Diving. Aerospace medicine and human performance. 2017 Dec 1:88(12):1088-1093. doi: 10.3357/AMHP.4912.2017. Epub     [PubMed PMID: 29157337]


Zhang JX, Berry JR, Beckstrand DP. Explosive Decompression with Resultant Air Gas Embolism in a Fourth Generation Fighter at Ground Level. Aerospace medicine and human performance. 2016:87(11):963-967     [PubMed PMID: 27779957]


. You're the Flight Surgeon. Aerospace medicine and human performance. 2016:87(10):906-909     [PubMed PMID: 27662356]


Alea K. Identifying the Subtle Presentation of Decompression Sickness. Aerospace medicine and human performance. 2015 Dec:86(12):1058-62. doi: 10.3357/AMHP.4279.2015. Epub     [PubMed PMID: 26630054]


Hundemer GL, Jersey SL, Stuart RP, Butler WP, Pilmanis AA. Altitude decompression sickness incidence among U-2 pilots: 1994-2010. Aviation, space, and environmental medicine. 2012 Oct:83(10):968-74     [PubMed PMID: 23066619]

Level 3 (low-level) evidence


Auten JD, Kuhne MA, Walker HM 2nd, Porter HO. Neurologic decompression sickness following cabin pressure fluctuations at high altitude. Aviation, space, and environmental medicine. 2010 Apr:81(4):427-30     [PubMed PMID: 20377149]

Level 3 (low-level) evidence


Bendrick GA, Ainscough MJ, Pilmanis AA, Bisson RU. Prevalence of decompression sickness among U-2 pilots. Aviation, space, and environmental medicine. 1996 Mar:67(3):199-206     [PubMed PMID: 8775396]

Level 3 (low-level) evidence


Murad MH, Altayar O, Bennett M, Wei JC, Claus PL, Asi N, Prokop LJ, Montori VM, Guyatt GH. Using GRADE for evaluating the quality of evidence in hyperbaric oxygen therapy clarifies evidence limitations. Journal of clinical epidemiology. 2014 Jan:67(1):65-72. doi: 10.1016/j.jclinepi.2013.08.004. Epub 2013 Nov 1     [PubMed PMID: 24189086]

Level 1 (high-level) evidence


Moon RE, Sheffield PJ. Guidelines for treatment of decompression illness. Aviation, space, and environmental medicine. 1997 Mar:68(3):234-43     [PubMed PMID: 9056035]


Hart GB. Treatment of decompression illness and air embolism with hyperbaric oxygen. Aerospace medicine. 1974 Oct:45(10):1190-3     [PubMed PMID: 4429061]


Green RD, Leitch DR. Twenty years of treating decompression sickness. Aviation, space, and environmental medicine. 1987 Apr:58(4):362-6     [PubMed PMID: 3579827]