Back To Search Results

Acute Scrotum Pain

Editor: Michael Mohseni Updated: 5/8/2023 6:15:01 PM


Acute scrotum pain is defined as “the constellation of new-onset pain, swelling, and/or tenderness of the intrascrotal contents.” Patients may describe the onset of symptoms as rapidly as occurring within minutes or up to 1 to 2 days, dependent on the etiology. The acute scrotum is an umbrella term that includes a wide variety of unique disease processes. Rapid evaluation and diagnostics are necessary due to the time dependency of certain morbid but reversible conditions, such as acute testicular torsion.

Knowledge of the relevant anatomy is essential in understanding the differential diagnosis and subsequent steps in the evaluation of acute scrotal pain. The testes are ovoid-shaped organs roughly 3 cm to 5 cm in length, 3 cm in both widths, 3 cm in depth, and vertically oriented. The tunica albuginea envelops them with continuous internal septations converging into a mediastinum testis, which acts as the structural support for the organ. Tunica albuginea, in turn, is surrounded by the tunica vaginalis. Posterolateral to the testis is the epididymis, a curved structure roughly 6 cm to 7 cm in its longest dimension. Its efferent ductules converge to form the ductus epididymis and eventually, the vas deferens.

The vascular anatomy of the scrotal contents is also relevant to review. The testes receive a joint supply of blood from the testicular artery, deferential artery, and the cremasteric artery, while the deferential artery and the cremasteric artery are branches of the inferior vesical and inferior epigastric artery, respectively. The testicular artery branches directly from the abdominal aorta. The testes are drained via small branching veins forming the pampiniform plexus and, ultimately, the testicular vein. Notably, the testicular vein drains directly into the inferior vena cava on the right while it drains into the left renal vein contralaterally.

The vascular structures, vas deferens, and nerves are all bound within the spermatic cord, a conduit allowing passage from the peritoneum to the scrotum via the inguinal canal. The cremaster muscle is also found within the spermatic cord. The tunica vaginalis usually surrounds only part of the testis and epididymis and then attaches posteriorly to the scrotal wall. However, when the tunica vaginally surrounds the testis and part of the spermatic cord, the testicle is no longer fixed to the scrotal wall and able to twist freely. This is known as the Bell-Clapper deformity and has an incidence of up to 12%.[1][2][3][4]


Register For Free And Read The Full Article
Get the answers you need instantly with the StatPearls Clinical Decision Support tool. StatPearls spent the last decade developing the largest and most updated Point-of Care resource ever developed. Earn CME/CE by searching and reading articles.
  • Dropdown arrow Search engine and full access to all medical articles
  • Dropdown arrow 10 free questions in your specialty
  • Dropdown arrow Free CME/CE Activities
  • Dropdown arrow Free daily question in your email
  • Dropdown arrow Save favorite articles to your dashboard
  • Dropdown arrow Emails offering discounts

Learn more about a Subscription to StatPearls Point-of-Care


The causative etiologies of acute scrotum pain are broad. These include ischemic, traumatic, infectious, inflammatory, referred pain, acute or chronic, or idiopathic. Given the nature of these, an acute scrotum should be considered analogous to patients presenting with an acute abdomen.

It is difficult to describe the causes of acute scrotum pain in subgroups, as many conditions are chronic but have an acute presentation. For example, inguinal hernias remain asymptomatic but when obstructed or strangulated present acutely.


  • Torsion of testes
  • Torsion of testicular appendages
  • Testicular hematoma
  • Thrombosed varicocele
  • Inguinoscrotal hernia (obstructed/strangulated)


  • Epididymitis
  • Epididymo-orchitis

Neuropathic/referred pain

  • Mid urethral stone
  • Inguinal hernias (obstructed/strangulated)
  • Aortic/common iliac artery aneurysm
  • Nerve entrapment
  • Diabetic neuropathy (chronic presentation is more common)
  • Sexual abuse

By far the most common causes are epididymitis/epididymo-orchitis, testicular appendage torsion, spermatic cord torsion (commonly referred to as testicular torsion), varicoceles, and obstructed or strangulated inguinal hernias. The incidence and frequency of these etiologies are highly variable by age groups. Acute scrotal pain in children is much more likely to represent torsion of the spermatic cord or testicular appendages whereas patients older than 25 are much more likely to have epididymitis. A complete list of differential diagnoses is discussed later.[5][6][7][8]


There is little data that specifically reports the incidence of the acute scrotum as a presenting complaint, but male genitourinary complaints are estimated at between 0.5% and 2.5% of all emergency department visits. The annual incidence of testicular torsion, however, is estimated at 1 in 4000. This means that an estimated 1 in every 160 men will experience spermatic cord torsion within their first 25 years of life. Although it is possible to occur at any age, the incidence drops off dramatically in the adult years. Even among children, however, the most common cause of acute scrotal pain is torsion of the appendix testis rather than that of the spermatic cord.

Epididymitis is the most common cause of acute scrotal pain in adults. It is estimated that over 600,000 cases are diagnosed in United States (US) emergency departments each year, and this condition was responsible for 1 out of every 144 outpatient visits for men between 18 and 50 years of age. The condition tends to have a bimodal age incidence due to differing microbiological etiologies and risk factors.[9][10][11][12]


Spermatic cord torsion may be intravaginal or extravaginal. Extravaginal torsion is seen almost exclusively in neonates. It occurs due to the increased mobility of the testicle before the descent into the scrotum when attached to the scrotal wall via the tunica vaginalis. During intravaginal torsion, frequently associated with the bell clapper deformity, the spermatic cord twists on itself, ultimately pinching off arterial blood supply to the testicle leading to ischemia and infarction. The degree of torsion may be variable, usually causing venous occlusion and congestion first. Most cases of spermatic cord torsion leading to infarction are twisted to at least 720 degrees.

Epididymitis is a genitourinary tract infection that is usually due to continuous spread from pathogens affecting the bladder of the urethra. In men less than 35 years old, this is most commonly associated with sexually transmitted organisms such as Chlamydia trachomatis and, less commonly, Neisseria gonorrhea. Men older than 35 years or those without sexual partners usually present with gram-negative urinary pathogens, which are also responsible for cystitis and prostatitis, predominantly Escherichia coli. Other urinary pathogens such as Klebsiella pneumoniae, Proteus mirabilis, and Ureaplasma urealyticum, may be seen. Rare organisms can occur, such as cytomegalovirus, Mycobacterium, and other fungal causes that may be seen in immunocompromised hosts such as those with HIV.[13]

When inguinal or inguinoscrotal hernias can not be reduced, venous and arterial flow is impeded. This results in ischemia.[14][15]

History and Physical

A focused history and physical examination are essential in the evaluation of the acute scrotum. A patient should be interviewed and asked about the onset and duration of symptoms as well as whether they have been continuous or intermittent. The clinician should ask about the history of increased activity, physical exertion, heavy lifting, or direct trauma as well as any objective external signs such as swelling, urethral discharge, erythema, rash, or skin color changes. Associated symptoms such as fevers, dysuria, frequency, urgency, hematospermia, abdominal pain, back pain, or weight loss should be required. It is also important to ask about relevant comorbid conditions including diabetes, congestive heart failure, or any immunocompromised state. A sexual history should also be reviewed including the number and gender of sexual partners, use of barrier contraceptives (condoms), and history of diagnosis of or treatment for sexually transmitted illnesses.

Physical examination should include a visual inspection of the fully exposed abdomen, groin, penis, and scrotum. Care should be taken to note any rashes, ulcers, abnormal scrotal asymmetry (it is normal for the left hemiscrotum to hang slightly lower), or horizontal position of a testicle. The scrotum, perineum, and thighs should be palpated to feel for the presence of crepitance or subcutaneous emphysema. The scrotal contents should be palpated to compare the relative size of the testes, detect any obvious intratesticular masses, or other scrotal contents such as hernias. The urethra should be inspected for discharge. Finally, the clinician should investigate bilaterally for the presence of a cremasteric reflex.

A “high-riding” asymmetrical testicle with an abnormal lay and loss of ipsilateral cremasteric reflex is historically described as the classic presentation of acute testicular torsion. If there is pain relief on lifting the affected testicle, this is suggestive of epididymitis, but if there is no pain relief then this suggests testicular torsion. This is called Prehn's sign. However, this dogmatic description of the classic presentation is not universally observed in all cases and may lead to misdiagnosis or delay in definitive treatment. The cremasteric reflex is fickle and may be absent in up to 30% of normal males without any pathology. Conversely, several case series report patients with surgically confirmed testicular torsion may still have preserved cremasteric reflexes anywhere from 8% to 30% of the time. Other scrotal pathology such as epididymo-orchitis may also result in the loss of a normal reflex.[16][17][18][19][8]


Evaluation first begins with a detailed history and physical examination. If the diagnosis of spermatic cord torsion is strongly suspected, then an emergency surgical consultation is warranted without further delay. The “classic” cutoff for salvage of testicular torsion is surgical exploration and detorsion within six hours of the onset of symptoms. This does not mean however that prompt evaluation and definitive surgical exploration be delayed for patients in whom symptoms have been present for greater than six hours. The salvage rates do drop to between 80% to 88% at 12 hours, 31% at 24 hours, and only 2.6% at 48 hours. This may be due to variable degrees or torsion (incomplete torsion) or torsion-detorsion phenomena.[20]

Provided it does not delay definitive surgical consultation, additional studies that may be useful include complete blood counts, urinalysis with microscopy, urine culture, and urethral swabs for gonorrhea and chlamydia. For systemically ill patients or those presenting with sepsis, blood cultures, inflammatory markers, and cross-sectional imaging of the pelvis through the mid-thighs may be considered.

Doppler ultrasonography is the most appropriate imaging modality for evaluation of the acute scrotum when it does not delay definitive surgical consultation in cases of presumed torsion. The sensitivity of color Doppler ultrasound is reported to range between 96% to 100% with a specificity of between 84% to 95%. A body of literature exists which also supports the role of point-of-care ultrasound by the treatment provider for the evaluation of the acute scrotum. A detailed review of this technique is beyond the scope of this article, but findings on ultrasound suggestive of testicular torsion include an enlarged, homogenous, hypoechoic testicle with the absent color flow or spectral Doppler waveforms suggesting increased vascular resistive index. The spermatic cord torsion may also be directly observed with ultrasound; a finding described as the “whirlpool” or “snail” sign.[21][22][23]

Conversely, infectious etiologies of the acute scrotum cause an increase in blood flow to the testicle or epididymis, which is apparent in Doppler imaging. Resistive indices of the testicle may be abnormally low, and the testicle or epididymis will again be larger than the asymmetry side. Abscesses may also be identified, as well as the presence of subcutaneous gas within the scrotal wall.

Other imaging modalities are also available. Radionuclide scrotal imaging (RNSI) was at one point the primary modality since its implementation in the 1970s. In the differentiation of testicular torsion and epididymo-orchitis, there is a reported sensitivity range of 89% to 98% and specificity of 90% to 100%. However, this modality is prone to false positives particularly in cases of spermatocele, hydrocele, and inguinal hernias, and may lead to unnecessary surgical exploration when compared to modern ultrasonography. MRI had 93% sensitivity and 100% specificity for diagnosing torsion; however, availability and length of time required to complete may limit its appropriateness. CT imaging is useful when there is a concern for necrotizing skin and soft tissue infections and Fournier gangrene.[11][24][25]

Treatment / Management

The definitive treatment of testicular torsion is surgical exploration and detorsion, usually followed by orchiopexy to prevent recurrent torsion. Manual detorsion can and often should be attempted at the bedside although its success rate is widely variable and has been reported to range from 25% to 80%. In patients with testicular torsion, the affected testicle is rotated medially. Therefore, manual detorsion should be attempted first from a medial-to-lateral direction (“opening of the book”) and may require 180 to 720 more degrees. Specifically, this requires counterclockwise rotation of the patient's right testicle or clockwise rotation of the patient's left testicle, similar to the action of opening the spine of a book. Manual detorsion is contraindicated if pain and/or suspected torsion have been present for longer than 6 hours. Point-of-care ultrasound may be useful in evaluating the direction and effectiveness of this maneuver. Successful manual detorsion should result in near-immediate relief of pain. Surgical exploration is still mandated even in the event manual detorsion is successful.[26](B2)

Treatment of epididymitis is discussed in detail in its respective article with antimicrobial therapy directed toward the most likely causative organism.[27][25]

Differential Diagnosis

The differential diagnoses include the following:

  • Acute epididymitis/epididymo-orchitis
  • Testicular appendage torsion
  • Spermatic cord torsion
  • Henoch-Schonlein purpura
  • Strangulated/incarcerated inguinal hernia
  • Varicocele
  • Scrotal cellulitis
  • Fournier gangrene
  • Idiopathic scrotal edema
  • Intratesticular hematoma
  • Scrotal or testicular abscess
  • Testicular infarction
  • Testicular neoplasm
  • Testicular rupture


The prognosis of acute scrotal pain depends on the cause. In patients with epididymitis, pain improves within several days of treatment, but the induration may last weeks or months. Some people with diabetes may develop an abscess leading to sepsis, which is a potential consequence. In patients who developed epididymitis secondary to sexual activity, the partner needs to be referred and treated to stop the cycle of transmission. For patients with a diagnosis of testicular torsion, the diagnosis depends on early diagnosis and treatment. If the treatment is delayed by 12-24 hours, the risk of losing testis and infertility is high.[28][29][30]


Delay in diagnosis and prompt treatment can result in various complications. If a severely damaged testicle is not removed, gangrene may occur. Infection can spread to the bloodstream, causing septicemia. Damage to both testes results in infertility.

Testicular prostheses may be used as cosmetic deformity occurs after orchidectomy.[31][32]


In many cases, the urologist will need to be consulted to determine the final diagnosis. The role of the radiologist is vital as some type of imaging study is usually required to confirm the diagnosis. The nurse is also important for educating the patient on scrotal disorders like epididymitis which may be associated with sexual activity but do not require surgery.

Pearls and Other Issues

Points to remember while managing a case of acute scrotum pain are:

  • The acute scrotum should be approached similarly to the acute abdomen. 
  • The differential diagnosis is broad but may be narrowed based on the patient’s demographics, risk factors, history, and physical examination.  
  • The most common etiology of acute scrotal pain in adults is epididymitis/epididymo-orchitis.
  • Suspected testicular torsion is a time-dependent surgical emergency and consultation should be not delayed.  
  • The most appropriate imaging modality is usually a Doppler ultrasound.
  • Despite “classic” presentations, a cremasteric reflex does not definitively confirm nor exclude torsion, and the testicle may be salvageable long after the 6-hour window.

Enhancing Healthcare Team Outcomes

The majority of people with acute scrotal pain initially present to the emergency department, and thus, the triage nurse should be fully aware of causes that are urgent and demand immediate medical attention and those that are elective. If acute torsion is suspected, the triage nurse must immediately admit the patient to the emergency department and notify the emergency department physician. The nurse should continue to monitor the patient and report increasing pain to the clinician. The nurse should assist in making sure the patient is evaluated quickly as the longer a patient goes with a torsed testicle, the more likely they will lose function. If there is a delay in evaluation or care, the nurse should be diligent in reporting it to the clinical team leader directing the patient's evaluation and care. Patients who have been diagnosed with torsion should be told to avoid sporting activities unless cleared by the urologist, as there is a small risk of recurrence.[33][34]

Interprofessional team management is crucial to managing acute scrotum pain and salvage affected testicles. Only by having an integrated pathway of best practices can one make the diagnosis of urological disorders and lower the morbidity.



Mellick LB, Mowery ML, Al-Dhahir MA. Cremasteric Reflex. StatPearls. 2023 Jan:():     [PubMed PMID: 30020720]


Vashisht D, Oberoi B, Venugopal R, Baveja S. Acute scrotum: Hansen's disease versus filariasis. International journal of mycobacteriology. 2018 Apr-Jun:7(2):195-197. doi: 10.4103/ijmy.ijmy_60_18. Epub     [PubMed PMID: 29900901]


Paick S, Choi WS. Varicocele and Testicular Pain: A Review. The world journal of men's health. 2019 Jan:37(1):4-11. doi: 10.5534/wjmh.170010. Epub 2018 May 16     [PubMed PMID: 29774668]


Marte A. The history of varicocele: from antiquity to the modern ERA. International braz j urol : official journal of the Brazilian Society of Urology. 2018 May-Jun:44(3):563-576. doi: 10.1590/S1677-5538.IBJU.2017.0386. Epub     [PubMed PMID: 29570260]


Raghavendran M, Venugopal A, Kiran Kumar G. Thrombosed varicocele - a rare cause for acute scrotal pain: a case report. BMC urology. 2018 May 8:18(1):34. doi: 10.1186/s12894-018-0347-2. Epub 2018 May 8     [PubMed PMID: 29739377]

Level 3 (low-level) evidence


Bandarkar AN, Blask AR. Testicular torsion with preserved flow: key sonographic features and value-added approach to diagnosis. Pediatric radiology. 2018 May:48(5):735-744. doi: 10.1007/s00247-018-4093-0. Epub 2018 Feb 21     [PubMed PMID: 29468365]


McAdams CR, Del Gaizo AJ. The utility of scrotal ultrasonography in the emergent setting: beyond epididymitis versus torsion. Emergency radiology. 2018 Aug:25(4):341-348. doi: 10.1007/s10140-018-1606-y. Epub 2018 Apr 21     [PubMed PMID: 29679169]


Roth B, Giannakis I, Ricklin ME, Thalmann GN, Exadaktylos AK. An Accurate Diagnostic Pathway Helps to Correctly Distinguish Between the Possible Causes of Acute Scrotum. Oman medical journal. 2018 Jan:33(1):55-60. doi: 10.5001/omj.2018.10. Epub     [PubMed PMID: 29468000]


Kim JS, Shin YS, Park JK. Clinical features of acute scrotum in childhood and adolescence: Based on 17years experiences in primary care clinic. The American journal of emergency medicine. 2018 Jul:36(7):1302-1303. doi: 10.1016/j.ajem.2017.10.063. Epub 2017 Oct 31     [PubMed PMID: 29100785]


Ring N, Staatz G. [Diagnostic Imaging in Cases of Acute Scrotum]. Aktuelle Urologie. 2017 Sep:48(5):443-451. doi: 10.1055/s-0043-100497. Epub 2017 May 16     [PubMed PMID: 28511233]

Level 3 (low-level) evidence


Pogorelić Z, Mustapić K, Jukić M, Todorić J, Mrklić I, Mešštrović J, Jurić I, Furlan D. Management of acute scrotum in children: a 25-year single center experience on 558 pediatric patients. The Canadian journal of urology. 2016 Dec:23(6):8594-8601     [PubMed PMID: 27995859]


García-Fernández G, Bravo-Hernández A, Bautista-Cruz R. [Testicular torsion: A case report]. Cirugia y cirujanos. 2017 Sep-Oct:85(5):432-435. doi: 10.1016/j.circir.2016.05.014. Epub 2016 Aug 8     [PubMed PMID: 27423885]

Level 3 (low-level) evidence


Santi M, Lava SAG, Simonetti GD, Bianchetti MG, Milani GP. Acute Idiopathic Scrotal Edema: Systematic Literature Review. European journal of pediatric surgery : official journal of Austrian Association of Pediatric Surgery ... [et al] = Zeitschrift fur Kinderchirurgie. 2018 Jun:28(3):222-226. doi: 10.1055/s-0037-1603089. Epub 2017 May 15     [PubMed PMID: 28505694]

Level 1 (high-level) evidence


Crawford P, Crop JA. Evaluation of scrotal masses. American family physician. 2014 May 1:89(9):723-7     [PubMed PMID: 24784335]


Yeap E, Pacilli M, Nataraja RM. Inguinal hernias in children. Australian journal of general practice. 2020 Jan-Feb:49(1-2):38-43. doi: 10.31128/AJGP-08-19-5037. Epub     [PubMed PMID: 32008266]


Gordhan CG, Sadeghi-Nejad H. Scrotal pain: evaluation and management. Korean journal of urology. 2015 Jan:56(1):3-11. doi: 10.4111/kju.2015.56.1.3. Epub 2015 Jan 12     [PubMed PMID: 25598931]


Sheth KR, Keays M, Grimsby GM, Granberg CF, Menon VS, DaJusta DG, Ostrov L, Hill M, Sanchez E, Kuppermann D, Harrison CB, Jacobs MA, Huang R, Burgu B, Hennes H, Schlomer BJ, Baker LA. Diagnosing Testicular Torsion before Urological Consultation and Imaging: Validation of the TWIST Score. The Journal of urology. 2016 Jun:195(6):1870-6. doi: 10.1016/j.juro.2016.01.101. Epub 2016 Feb 2     [PubMed PMID: 26835833]

Level 1 (high-level) evidence


Sharp VJ, Kieran K, Arlen AM. Testicular torsion: diagnosis, evaluation, and management. American family physician. 2013 Dec 15:88(12):835-40     [PubMed PMID: 24364548]


Wang F, Mo Z. Clinical evaluation of testicular torsion presenting with acute abdominal pain in young males. Asian journal of urology. 2019 Oct:6(4):368-372. doi: 10.1016/j.ajur.2018.05.009. Epub 2018 May 26     [PubMed PMID: 31768324]


Howe AS, Vasudevan V, Kongnyuy M, Rychik K, Thomas LA, Matuskova M, Friedman SC, Gitlin JS, Reda EF, Palmer LS. Degree of twisting and duration of symptoms are prognostic factors of testis salvage during episodes of testicular torsion. Translational andrology and urology. 2017 Dec:6(6):1159-1166. doi: 10.21037/tau.2017.09.10. Epub     [PubMed PMID: 29354505]


Güneş M, Umul M, Çelik AO, Armağan HH, Değirmenci B. A novel approach for manual de-torsion of an atypical (outward) testicular torsion with bedside Doppler ultrasonography guidance. Canadian Urological Association journal = Journal de l'Association des urologues du Canada. 2015 Sep-Oct:9(9-10):E676-8. doi: 10.5489/cuaj.2849. Epub 2015 Sep 9     [PubMed PMID: 26425241]


Kitami M. Ultrasonography of pediatric urogenital emergencies: review of classic and new techniques. Ultrasonography (Seoul, Korea). 2017 Jul:36(3):222-238. doi: 10.14366/usg.17011. Epub 2017 Mar 30     [PubMed PMID: 28494525]


Ufuk F, Herek D, Herek Ö, Akbulut M. Diffusion-Weighted Imaging and Color Doppler Ultrasound in Evaluation of Partial Testicular Torsion in Rat Model. Polish journal of radiology. 2017:82():542-546. doi: 10.12659/PJR.902613. Epub 2017 Sep 15     [PubMed PMID: 29657618]


Ayvaz OD, Celayir AC, Moralioglu S, Bosnali O, Pektas OZ, Pelin AK, Caman S. Four-year retrospective look for acute scrotal pathologies. Northern clinics of Istanbul. 2015:2(3):182-188. doi: 10.14744/nci.2016.16768. Epub 2016 Jan 10     [PubMed PMID: 28058365]

Level 2 (mid-level) evidence


Beck V, Grabbert M, Apfelbeck M, Schulz G, Stief CG, Tritschler S. [The acute scrotum - primary diagnostic approach and treatment]. MMW Fortschritte der Medizin. 2016 Oct:158(17):49-50     [PubMed PMID: 27704421]


Tanaka K, Ogasawara Y, Nikai K, Yamada S, Fujiwara K, Okazaki T. Acute scrotum and testicular torsion in children: a retrospective study in a single institution. Journal of pediatric urology. 2020 Feb:16(1):55-60. doi: 10.1016/j.jpurol.2019.11.007. Epub 2019 Nov 27     [PubMed PMID: 31874735]

Level 2 (mid-level) evidence


Friedman AA, Palmer LS, Maizels M, Bittman ME, Avarello JT. Pediatric acute scrotal pain: A guide to patient assessment and triage. Journal of pediatric urology. 2016 Apr:12(2):72-5. doi: 10.1016/j.jpurol.2016.03.003. Epub 2016 Mar 11     [PubMed PMID: 27036070]


Rottenstreich M, Glick Y, Gofrit ON. The clinical findings in young adults with acute scrotal pain. The American journal of emergency medicine. 2016 Oct:34(10):1931-1933. doi: 10.1016/j.ajem.2016.06.066. Epub 2016 Jun 19     [PubMed PMID: 27377834]


Pogorelić Z, Mrklić I, Jurić I. Do not forget to include testicular torsion in differential diagnosis of lower acute abdominal pain in young males. Journal of pediatric urology. 2013 Dec:9(6 Pt B):1161-5. doi: 10.1016/j.jpurol.2013.04.018. Epub 2013 Jun 3     [PubMed PMID: 23743132]

Level 2 (mid-level) evidence


Molokwu CN, Somani BK, Goodman CM. Outcomes of scrotal exploration for acute scrotal pain suspicious of testicular torsion: a consecutive case series of 173 patients. BJU international. 2011 Mar:107(6):990-3. doi: 10.1111/j.1464-410X.2010.09557.x. Epub 2010 Sep 21     [PubMed PMID: 21392211]

Level 2 (mid-level) evidence


Iio K, Nomura O, Kinumaki A, Aoki Y, Satoh H, Sakakibara H, Hataya H. Testicular Torsion in an Infant with Undescended Testis. The Journal of pediatrics. 2018 Jun:197():312-312.e1. doi: 10.1016/j.jpeds.2018.01.015. Epub 2018 Feb 21     [PubMed PMID: 29429568]


Hayon S, Michael J, Coward RM. The modern testicular prosthesis: patient selection and counseling, surgical technique, and outcomes. Asian journal of andrology. 2020 Jan-Feb:22(1):64-69. doi: 10.4103/aja.aja_93_19. Epub     [PubMed PMID: 31744995]


Remer EM, Casalino DD, Arellano RS, Bishoff JT, Coursey CA, Dighe M, Fulgham P, Israel GM, Lazarus E, Leyendecker JR, Majd M, Nikolaidis P, Papanicolaou N, Prasad S, Ramchandani P, Sheth S, Vikram R, Karmazyn B. ACR Appropriateness Criteria ® acute onset of scrotal pain--without trauma, without antecedent mass. Ultrasound quarterly. 2012 Mar:28(1):47-51. doi: 10.1097/RUQ.0b013e3182493c97. Epub     [PubMed PMID: 22357246]


Arumainayagam N, Gillatt D. Acute scrotal pain needs prompt investigation. The Practitioner. 2007 Jan:251(1690):24, 26, 28-9     [PubMed PMID: 17290853]